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1. INTRODUCTION

We present the formulation of a fully implicit, semi-
Lagrangian, 3D nonhydrostatic, limited area, finite dif-
ference grid point model in a terrain following, hydro-
static pressure based hybrid vertical coordinate. The
model is being developed as a contribution to the
Weather Research and Forecasting (WRF) model devel-
opment initiative at NCEP/EMC.

A semi-implicit semi-Lagrangian (SISL) scheme
provides a computationally efficient method for solving
the dynamical equations of the atmosphere, both in lim-
ited-area NWP and global GCM-type models. In a SISL
scheme, the so-called nonlinear terms (essentially the
terms that are non-advective and left over from the semi-
implicit linearization of the governing equations) are
treated in a time-explicit manner. In a fully-implicit
semi-Lagrangian (FISL) scheme, such nonlinear terms
are treated in an implicit manner so that the FISL
scheme becomes ‘more’ stable compared to a SISL
scheme.

Since the introduction of hydrostatic pressure
(Laprise 1992) as an independent vertical coordinate for
use in nonhydrostatic models, a number of Eulerian,
nonhydrostatic, limited-area NWP models that employ a
terrain-following, hydrostatic-pressure based vertical
coordinate, have been developed (e.g., Bubnova et al.
1995, Skamarock et al. 2001, Janjic et al. 2001).

Recently, a fully-implicit, semi-Lagrangian, nonhy-
drostatic, global grid-point model has been developed
by Yeh et al. (2002), that employs a terrain-following,
reference-state hydrostatic-pressure based vertical coor-
dinate. We are currently developing a FISL nonhydro-
static, limited-area, grid-point model at NCEP/EMC. In
our model, we have essentially adapted the FISL
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scheme proposed by Yeh et al. (2002), to our continuous
set of model equations. However, unlike their model, we
employ (a) a terrain-following, hydrostatic-pressure
based hybrid vertical coordinate, (b) a conformal map-
coordinate in the horizontal, (c) 3D Coriolis force terms
in the momentum equations, (d) a 3D unstaggered grid
in space, and (e) an independently developed space-dis-
cretization of the model equations.

2. MODEL FORMULATION

2.1 Continuous equations
The governing equations for a fully-compressible,
nonhydrostatic, moist-diabtic atmosphere can be written
as
Momentum equations
du = F, Efzvfyfwam[RTvaxlnp
+(0,/0,9)0,01 +F,, (1)
dv=F,==f.u +yfxw—m[RTv0ylnp
+(0,p70,P)0, 91 +F,, (2)
Vdw = F,=y(f u—fv)-g(1-9,p/0,p)

tyF, o )

Thermodynamic energy equation

dInT,~Kd,Inp = Q/(c,T,), (4)
Definition of w or ©-tendency equation

de=gw, (5)
Mass continuity equation

d,(037) + (D +0,M)d,5 = 0, ()
Definition of hydrostatic pressure p

0,® = ~(RT ./ p)d, . (7)
Moisture continuity equation

dg=-0,/L. (8)

Here (x, y) denote the Cartesian map-projection horizon-
tal coordinate, with a map factor m; z denotes the height
above the mean sea level and n denotes the vertical
coordinate, defined later, based on the hydrostatic pres-

sure, p; u, v, and w denote the wind components in the



x-, y-, and n-directions, respectively; T,, @, ¢, and p
respectively denote the virtual temperature, the geopo-
tential (gz), the specific humidity, and the total pressure.
In the above equations, the partial derivatives wrt x, y,
and ¢ (time) are taken over constant N surfaces. In the
momentum equations (1)-(3), the components of the 3D
Coriolis force are combined with the metric terms and
the coefficients of the resulting terms are denoted by

f,Eesina-v/a,

nyecosO( +u/a,

S.Ef+ud m—vd m,
where
e=2Qcosd, f=2Qsin¢, and tana =—(0,A/0,¢)cosd.
Here A and ¢ denote the longitude and latitude, respec-
tively. In the mass continuity equation (6), D denotes
horizontal divergence defined by

D=m’[0(u/m)+0,(v/m)].
For an arbitrary variable, |, the operator d,() is defined
by

dW=y = [0, +m(ud, +vd )+ 1o, 1W,
where 1 =d,n denotes the n-coordinate vertical veloc-
ity. The F terms in (1)-(3) denote friction; Q in (4)
denotes the heating rate; O, and L in (8) denote the
apparent moisture sink and latent heat of condensation,
respectively. The virtual temperature T, in (4) is defined
by T',=T[1+(R,/R—1)q]. The physical constants a, g,

Q’ R, Cp’

K=R/c,,and R, have their usual meaning.

The constant parameter Y in (1)-(3) is set to unity
for a nonhydrostatic model and it is set to zero for a
hydrostatic model. For a hydrostatic model, p = p, so
that (3) is trivially satisfied and (5) becomes decoupled
(and thus excluded) from the governing equations and ¢
is then diagnosed using (7), that reduces to the Aydro-
static equation 0,¢ = —RT 0 Inp.

The vertical coordinate () is defined by
plx,y,n, 1) = AN)pr+B(N)p«(x, 3, 1), ©)

where prand p, , respectively, denote a constant pres-

sure at the model top and the hydrostatic pressure at the
earth’s surface (model bottom). Without loss of general-
ity, we assume that n varies from zero at the surface to
unity at the model top. The functions 4 and B are arbi-
trary, but satisfy the restrictions

A(0) = 0; B(0) = 1; 4(1) = 1; B(1) = 0. (10)

When A4 and B are linear functions of ), defined by

A() =n;B(n) =1-n, (11a)
equation (9) yields
N = (p«—p)/(P«—prr)- (11b)

Equation (11Db) is identified as a modified form of Phil-
lip’s (1957) o-coordinate, where the model top is at a
nonzero constant pressure. This particular form of n has
been used in a number of Eulerian nonhydrostatic lim-
ited-area grid point models, including the NCAR WRF
mass-coordinate model (Skamarock et al. 2001) and the
NCEP Nonhydrostatic meso-scale model (NMM, Janjic
et al. 2001).

The earth’s surface and model top are assumed to
be material surfaces that are also n-coordinates surfaces,
so that the lower and upper boundary conditions are

n=0atn=0andn =1. (12)

2.2 Fully-implicit semi-Lagrangian scheme

Let us consider a generic prognostic equation

dy = F[Y(x, y,n,0)]. (13)
Then, along a backward 3D trajectory, a two time-level,
fully-implicit semi-Lagrangian (FISL) scheme for (13)
can be written as

-y

At

Here, n and n-1 denote the two time levels, Az is the time
step, and € 0 [0, 1] denotes the uncentering parameter.
The variables with a subscript d are evaluated at the

departure point, and the variables without a subscript are
carried/evaluated at the grid points.

-l F (1 -FT (14

Introducing the variables
1+¢ Y 1-€
=— "Ar: =X 4 _
T==An D=2+, (15)
we can rewrite (14) as

n n—1
LI"_,F”=LIJ‘{ +ﬁpd
T T 1+¢

n—1_

=0, (16)

Let us now linearize F" as F"' = L' + N", where L and N,
respectively, denote the linear and nonlinear parts of F;
and then rewrite (16) as

W/t-L =04 N =5, (17)

For a traditional semi-implicit semi-Lagrangian
scheme, N" is evaluated in a time-explicit manner, using
the time extrapolation

N"=2N""'oN"TE (18)
On the other hand, for the fully-implicit semi-

Lagrangian scheme, (17) is solved as an iterative prob-
lem



w't-? = D§_1+[N"](i_l), (19)

where the superscript (i) denotes an iterative index.
2.3 FISL discretization of continuous equations

Towards this objective, the governing equations (1)-
(7) are linearized wrt a resting, hydrostatic, isothermal
(constant temperature, Tyyy) reference atmosphere, with-

out surface topography. The geopotential and the hydro-
static pressure of the reference state are given by

@(N) = —RTgoIn(po/ Poo) ;

po(N) = AM)pr+B(N)pg (20)
where p is a standard pressure. Then, the dependent
variables, @, p, T,, and p are expressed in terms of the
reference atmosphere as

0= 0u(x, y)+ () + @5 p = py(n) +r',

T,=Ty+T,p=pexp(q'). 21)
Here @« denotes the surface geopotential.

Using (21), the thermodynamic equation (4), the ¢-
tendency equation (5), and the mass continuity equation
(6) can be rewritten as

d[In(1+T"/Ty)—Kln{g'+In(1+r'/py)}] = Fy
=KkNd Ny +0/(c,T,), (22)
de = F(pERTOOr']dn/\o+gw
—m(ud, +v0,)¢s, (23)
d,(0,r") = F,=-[0,(Nd,py) + Ddpy+
(D+0,Moyr],  (24)

where Ay =Inp, .

Then, applying the scheme (16) to each of the prog-
nostic equations (1), (2), (3), (22), (23), and (24), we
obtain

n n n—1

u"/T-Fl = (@) (25a)
Viir-Fr= @)t (25b)
yw'/1-F) = (DH,)Z”, (25¢)

%[m(l +T"/Tyo) —K{q" +In(1++"/p)}] - F7

= (@)% ', (25d)

’ -1
¢ /1-Fy=(0), (25e)
o, /t-Fr = (0!, (259)
_u,l—¢
where Du=;+mFu’ etc.

The functions F”

u?’

F', F,

w2

Fr, Fy,
appearing above, are then linearized in terms of the fol-

lowing linear and nonlinear components

and F

L= fv"-md G"; N'=[F,-L]", (26a)
L= fyul - md, 6" Ni=1F, L)', (26b)
Ly =g0,(poq")/ dybos Ny =[F,~L,]", (26¢)
Ly= Kr']"dn/\o; N3O Qn/(CpT}:) , (26d)

Ly=RT o0 "d N+ gw"; Ny=-m(u"0,+v" )o., (26¢)
L:1 Ef[an(r.]ndr'ﬁ()) + Dndnijo] 5

Ny =-[(D"+8,1")3,"], (261)
where

G'=¢+ RToo(q' + ’”'/13()) P (26g)

denotes a perturbation generalized geopotential. In (26a)
and (26b), the Coriolis parameter f is linearized as
[ = fo+ /), where f is an area-averaged value of f.

The symbol O used in (26d) indicates that the form

of N’ is not final at this stage of the derivation.

Then, substituting (26a) through (26f) in (25a)
through (25f), respectively, we obtain

/T f"+md G = S, =(0,)"  + N, (27a)
VT fl+md,G" = 5,=(0,)) N, (27b)
n ~ N ~ _ n—1 n
yw /ngan(poq )/a’np0 :SW=(DW)d +N,,, (27¢)
%[111(1 FT"/ Tog)—k{q" + (1 + "/ o)} —KA"d, A
n—1 n
- 5,0 (@pL + Ny, (27d)

§"/T— (gw" + RToo"dyAg) = Sp=(0) '+ Ng.(27e)

o
0"/ T+ [6n(r']"dn270) +D"dypol = S,

=(0,)) '+ N7

The two logarithmic terms in (27d) are linearized so

that (27d) is further reduced to the from

Lo non .
E[Tn/ToofK(q """ Do)l 7Kr]ndn/\0 =S,

n—1 n
=(0r), *Nz, (282)
where

n_l " 1
N7=[T"/Tog—In(L+T"/Ty)

k(" Py~ n(1+ 7"/ p)} 1 + 0"/ (¢, T}) . (28b)



Thus, equations (27a), (27b), (27c), (28a), (27e),
and (27f) represent the individual FISL schemes for the

prognostic variables (u, v, w, T, @ , and 0, )", respec-

tively. This set is augmented by a linearized from of the
hydrostatic-pressure equation (7), given by

an(p'" = RT[(T"/ Ty~ q’")dn/\o + an(r"'/;ao)]

+0g, (29)
where the exact form I]:'p is not shown. Note that these

equations are to be solved in the iterative manner indi-
cated by (19).

Then, the FISL discrete equations (27a), (27b),
(27¢), (28a), (27e), (271), (29), and (26g) in terms of the

unknown variables (u, v, w, T', @, ', ¢', 1, and G')",
are algebraically manipulated so that a single 3D elliptic

. n . .
equation for G'* is derived:

-1 -1
yu (1 —K) S 10|, ~1/2 un
|:Dh r z%)nn’ZD(pO G

gTK KRTyt
=¥,, (30a)
where
2
YRT
D= ———(9,, + 0, )5 =1+ —3,
L+ (fo1) K(gT)
D = On¥ D. W=D (DY) ; 30b
rlLIJ_dn_/\O: nnw_ n( qu): ( )

and the exact form of ¥, is not shown. We need to solve

(30a) for G'" in conjunction with the back-substitution
equations (not shown) for the other unknown variables,
in an iterative manner. This in essence completes the
FISL formulation as it applies to the continuous equa-
tions.

2.4 On space discretization and other issues

A 3D unstaggered grid is used in (x, y, n) for spatial
discretization; all model variables (u, v, w, T', @', r',
q', G', ) are carried at each grid point. Second-order
centered schemes are used for all non-advective terms
and computations on the grid. The 3D backward trajec-
tory calculations employ linear interpolations, whereas
3D quasi-cubic interpolation is used for evaluation of

the IZIZ,f1 functions.
The 3D elliptic equations (30a) for G'" is vertically

separable, but not so horizontally due to the map factor,
m(x, y) , appearing in the operator D,( ). The 3D ellip-

tic equation (30a) can be vertically decoupled into a set
of K (= number of vertical levels in the model) 2D ellip-
tic equations, which can be solved iteratively by a pre-
conditioned generalized conjugate residual (GCR) algo-
rithm (e.g., Saad 2003). Alternatively, a pre-conditioned
GCR algorithms can be employed to solve the 3D ellip-
tic equation (30a) without going into vertical decou-

pling.
3. CONCLUSIONS

A fully-implicit, semi-Lagrangian, 3D nonhydro-
static, limited-area, grid-point model in a hydrostatic-
pressure based, terrain-following, hybrid vertical coor-
dinate is being developed at NCEP/EMC under the
WRF model development initiative. Preliminary results
will be presented at the conference.
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